Search results for "Methods: Data analysi"
showing 10 items of 27 documents
Measuring the electron temperatures of coronal mass ejections with future space-based multi-channel coronagraphs: a numerical test
2018
Context. The determination from coronagraphic observations of physical parameters of the plasma embedded in coronal mass ejections (CMEs) is of crucial importance for our understanding of the origin and evolution of these phenomena. Aims. The aim of this work is to perform the first ever numerical simulations of a CME as it will be observed by future two-channel (visible light VL and UV Ly-α) coronagraphs, such as the Metis instrument on-board ESA-Solar Orbiter mission, or any other future coronagraphs with the same spectral band-passes. These simulations are then used to test and optimize the plasma diagnostic techniques to be applied to future observations of CMEs. Methods. The CME diagno…
Cavezzo, the first Italian meteorite recovered by the PRISMA fireball network. Orbit, trajectory, and strewn-field
2020
ABSTRACT Two meteorite pieces have been recovered in Italy, near the town of Cavezzo (Modena), on 2020 January 4th. The associated fireball was observed on the evening of New Year’s Day 2020 by eight all-sky cameras of the PRISMA fireball network, a partner of FRIPON. The computed trajectory had an inclination angle of approximately 68° and a velocity at infinity of 12.8 km s−1. Together with the relatively low terminal height, estimated as 21.5 km, those values were indicating the significant possibility of a meteorite dropping event, as additionally confirmed by the non-zero residual total mass. The strewn-field was computed taking into account the presence of two bright light flashes, re…
A search for point sources of EeV neutrons
2012
A thorough search of the sky exposed at the Pierre Auger Cosmic Ray Observatory reveals no statistically significant excess of events in any small solid angle that would be indicative of a flux of neutral particles from a discrete source. The search covers from −90◦ to +15◦ in declination using four different energy ranges above 1 EeV (1018 eV). The method used in this search is more sensitive to neutrons than to photons. The upper limit on a neutron flux is derived for a dense grid of directions for each of the four energy ranges. These results constrain scenarios for the production of ultrahigh energy cosmic rays in the Galaxy.
Sensitivity of the Cherenkov Telescope Array to spectral signatures of hadronic PeVatrons with application to Galactic Supernova Remnants
2023
The local Cosmic Ray (CR) energy spectrum exhibits a spectral softening at energies around 3~PeV. Sources which are capable of accelerating hadrons to such energies are called hadronic PeVatrons. However, hadronic PeVatrons have not yet been firmly identified within the Galaxy. Several source classes, including Galactic Supernova Remnants (SNRs), have been proposed as PeVatron candidates. The potential to search for hadronic PeVatrons with the Cherenkov Telescope Array (CTA) is assessed. The focus is on the usage of very high energy $\gamma$-ray spectral signatures for the identification of PeVatrons. Assuming that SNRs can accelerate CRs up to knee energies, the number of Galactic SNRs whi…
XMM-Newton Large Program on SN1006 - I: Methods and Initial Results of Spatially-Resolved Spectroscopy
2015
Based on our newly developed methods and the XMM-Newton large program of SN1006, we extract and analyze the spectra from 3596 tessellated regions of this SNR each with 0.3-8 keV counts $>10^4$. For the first time, we map out multiple physical parameters, such as the temperature ($kT$), electron density ($n_e$), ionization parameter ($n_et$), ionization age ($t_{ion}$), metal abundances, as well as the radio-to-X-ray slope ($\alpha$) and cutoff frequency ($\nu_{cutoff}$) of the synchrotron emission. We construct probability distribution functions of $kT$ and $n_et$, and model them with several Gaussians, in order to characterize the average thermal and ionization states of such an extended s…
ELDAR, a new method to identify AGN in multi-filter surveys: the ALHAMBRA test case
2017
We present ELDAR, a new method that exploits the potential of medium- and narrow-band filter surveys to securely identify active galactic nuclei (AGN) and determine their redshifts. Our methodology improves on traditional approaches by looking for AGN emission lines expected to be identified against the continuum, thanks to the width of the filters. To assess its performance, we apply ELDAR to the data of the ALHAMBRA (Advance Large Homogeneous Area Medium Band Redshift Astronomical) survey, which covered an effective area of 2.38 deg2 with 20 contiguous medium-band optical filters down to F814W ≃ 24.5. Using two different configurations of ELDAR in which we require the detection of at lea…
Gaia -ESO Survey: Analysis of pre-main sequence stellar spectra
2015
This paper describes the analysis of UVES and GIRAFFE spectra acquired by the Gaia-ESO Public Spectroscopic Survey in the fields of young clusters whose population includes pre-main sequence (PMS) stars. Both methods that have been extensively used in the past and new ones developed in the contest of the Gaia-ESO survey enterprise are available and used. The internal precision of these quantities is estimated by inter-comparing the results obtained by such different methods, while the accuracy is estimated by comparison with independent external data, like effective temperature and surface gravity derived from angular diameter measurements, on a sample of benchmarks stars. Specific strategi…
An iterative method in a probabilistic approach to the spectral inverse problem - Differential emission measure from line spectra and broadband data
2010
Inverse problems are of great importance in astrophysics for deriving information about the physical characteristics of hot optically thin plasma sources from their EUV and X-ray spectra. We describe and test an iterative method developed within the framework of a probabilistic approach to the spectral inverse problem for determining the thermal structures of the emitting plasma. We also demonstrate applications of this method to both high resolution line spectra and broadband imaging data. Our so-called Bayesian iterative method (BIM) is an iterative procedure based on Bayes' theorem and is used to reconstruct differential emission measure (DEM) distributions. To demonstrate the abilities …
A New Look at Spitzer Primary Transit Observations of the Exoplanet HD 189733b
2014
Blind source separation techniques are used to reanalyse two exoplanetary transit lightcurves of the exoplanet HD189733b recorded with the IR camera IRAC on board the Spitzer Space Telescope at 3.6$\mu$m during the "cold" era. These observations, together with observations at other IR wavelengths, are crucial to characterise the atmosphere of the planet HD189733b. Previous analyses of the same datasets reported discrepant results, hence the necessity of the reanalyses. The method we used here is based on the Independent Component Analysis (ICA) statistical technique, which ensures a high degree of objectivity. The use of ICA to detrend single photometric observations in a self-consistent wa…
A Targeted Search for Point Sources of EeV Neutrons
2014
A flux of neutrons from an astrophysical source in the Galaxy can be detected in the Pierre Auger Observatory as an excess of cosmic-ray air showers arriving from the direction of the source. To avoid the statistical penalty for making many trials, classes of objects are tested in combinations as nine “target sets”, in addition to the search for a neutron flux from the Galactic Center or from the Galactic Plane. Within a target set, each candidate source is weighted in proportion to its electromagnetic flux, its exposure to the Auger Observatory, and its flux attenuation factor due to neutron decay. These searches do not find evidence for a neutron flux from any class of candidate sources. …